Biosynthesis of cardiolipin from phosphatidylglycerol in Staphylococcus aureus.
نویسندگان
چکیده
Cardiolipin (CL) synthetase from Staphylococcus aureus catalyzes the complete conversion of two molecules of phosphatidylglycerol (PG) to one molecule of CL and one molecule of glycerol. The fatty acids and phosphates of the two PG molecules can be quantitatively recovered in the CL. The enzyme is membrane-bound, shows a linear relationship with the product formed between 10 and 125 mug of membrane protein, has a pH optimum at 4.4, a temperature optimum between 37 and 45 C, a K(m) for PG of 2.1 x 10(-4)m, a V(max) of 200 nmoles of CL per min per mg of membrane protein, and does not require monovalent or divalent metals for activity. The enzyme has no nucleotide requirement and is not affected by prolonged dialysis, and treatment of the enzyme with charcoal has no effect on its activity. The enzyme has no phosphomonoesterase or phosphodiesterase activity, does not act on CL, is specific for PG, and CL and glycerol are the sole products of its activity. Other lipids do not stimulate or inhibit its activity. The enzyme is inhibited by organic solvents and some detergents. There is sufficient CL synthetase activity to account for CL synthesis during exponential growth. Inhibition of CL hydrolysis during growth results in an increase in CL that is balanced by a loss of PG. The activity of CL synthetase is not affected by cytidine diphosphate diglyceride but is inhibited competitively by the product, CL.
منابع مشابه
Activation of bacterial ceramidase by anionic glycerophospholipids: possible involvement in ceramide hydrolysis on atopic skin by Pseudomonas ceramidase.
We have reported previously that the ceramidase from Pseudomonas aeruginosa AN17 isolated from a patient with atopic dermatitis requires detergents for hydrolysis of ceramide (Cer) [Okino, Tani, Imayama and Ito (1998) J. Biol. Chem. 273, 14368--14373]. In the present study, we report that some glycerophospholipids strongly activated the hydrolysis of Cer by Pseudomonas ceramidase in the absence...
متن کاملN-Acetylsphingosine stimulates phosphatidylglycerolphosphate synthase activity in H9c2 cardiac cells.
Cardiolipin and phosphatidylglycerol biosynthesis were examined in H9c2 cells incubated with short-chain ceramides. Incubation of cells with N-acetylsphingosine or N-hexanoylsphingosine stimulated [1, 3-3H]glycerol incorporation into phosphatidylglycerol and cardiolipin, with N-acetylsphingosine having the greater effect. The mechanism for the ceramide-mediated stimulation of de novo phosphatid...
متن کاملCardiolipin prevents membrane translocation and permeabilization by daptomycin.
Daptomycin is an acidic lipopeptide antibiotic that, in the presence of calcium, forms oligomeric pores on membranes containing phosphatidylglycerol. It is clinically used against various Gram-positive bacteria such as Staphylococcus aureus and Enterococcus species. Genetic studies have indicated that an increased content of cardiolipin in the bacterial membrane may contribute to bacterial resi...
متن کاملCorrelation of cell membrane lipid profiles with daptomycin resistance in methicillin-resistant Staphylococcus aureus.
We compared the cell membrane (CM) lipid composition among nine well-characterized daptomycin-susceptible (Dap(s))/Dap-resistant (Dap(r)) methicillin-resistant Staphylococcus aureus (MRSA) strain pairs. Compared to the 9 Dap(s) parental strains, Dap(r) strains (with or without mprF-yycFG mutations) exhibited significantly reduced phosphatidylglycerol (PG) content (P < 0.01), significantly incre...
متن کاملCardiolipin biosynthesis in the isolated heart.
The pathway for the biosynthesis of new cardiolipin was investigated in the isolated perfused intact rat heart. Isolated rat hearts were perfused in the Langendorff mode for up to 60 min with Krebs-Henseleit buffer containing 0.1 microM [U-14C]glycerol. Analysis of radioactivity incorporated into phospholipids in the organic phase revealed an increase in radioactivity incorporated into phosphat...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of bacteriology
دوره 109 2 شماره
صفحات -
تاریخ انتشار 1972